Abstract
In recent years, membrane technologies are widely utilized in water and wastewater treatment processes. However, controlling and improving these systems still need to be investigated and, therefore, are attracting increasing amounts of attention from researchers worldwide. Industry 4.0 has increased in importance over the past few years, and artificial intelligence (AI) technology has demonstrated its strength in supporting decision-making in various fields, including environmental systems and especially membrane processes. AI allows for cost-effective operation of systems, including better planning and tracking as well as comprehensive understanding of resource-loss in real-time, then maximizing revenue capture and water quality satisfaction. This study therefore aims to provide a comprehensive review of the current application of AI-based tools in simulating membrane processes as well as the feasibility of applying these models to other fields in which membranes are to be used in the future. The existing conventional mathematical models are illustrated along with their advantages and shortcomings. The definition and classification of state-of-the-art AI models, as well as the benefits of these over conventional models, are also discussed. Furthermore, the basic principle of membrane processes and current application of AI-based technologies in simulating the performance of these membrane systems are systematically reviewed. Finally, the implications and recommendations for future studies are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Critical Reviews in Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.