Abstract
The South China Sea contains many coral reefs, and there is a lot of discussion about the best way to dispose of them. Finding ways to use these materials effectively in marine engineering could help address the shortage of natural aggregates in coastal engineering. One potential solution is using coral concrete, which offers cost-effective and enhanced properties. A type of coral fiber concrete using sea sand is created by combining coral rock, sea sand, seawater, PVA fiber, and PP fiber. The findings indicate that by utilizing the optimal ratio of the two fibers (3 kg PVA + 1 kg PP and 2 kg PVA + 2 kg PP), the cubic and axial compressive strength of the new concrete can be increased by 10 % and 20 %, respectively compared to ordinary coral concrete. Furthermore, incorporating these fibers can also reduce axial displacement, resulting in an elastic modulus that is 30–50 % higher than non-fiber variants while enhancing axial toughness. Finally, this study examines stress-strain curves at three different stages through analysis of macroscopic and microscopic failure mechanisms. It was found that there exists a correlation exceeding 0.9 between two mathematical models and measured stress-strain curves from this study. The effective use of composite plastic fiber significantly enhances concrete material performance while providing valuable data support for marine economic facilities construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.