Abstract

Recent economic and environmental concerns have prompted intensive research on the development and optimisation of rare-earth free permanent magnets, in particular of ferrites. M-type barium hexaferrites (BaFe12O19, BaM) are a type of technologically important, low-cost permanent magnet, with high Tc and high resistance to oxidation and corrosion. Their magnetic performance can be improved upon by exploring exchange-coupling mechanisms, to increase their competitiveness with existing rare-earth magnets. The present investigation explores core-shell-like BaM/Fe3O4 nanocomposites, where BaM flake-like particles where prepared via the sol-gel auto-combustion method, and then coated by magnetite spinel nanoparticles via a hydrothermal method, requiring no post-heat treatment. We show how optimised hard to soft magnetic phase ratio and preparation conditions lead to a significant enhancement to the saturation magnetization and remanence, and consequently to an increase of over 75% in the maximum energy product, compared to the parent BaM hexagonal ferrite compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call