Abstract

The osmotic lysis of photodamaged lysosomes is a critical event for killing tumor cells. How the photodamage increases lysosomal osmotic sensitivity is still unclear. In this work, the effect of the photooxidation of membrane thiol groups on the lysosomal osmotic sensitivity was studied by measuring the thiol groups with 5,5′-dithio-bis(2-nitrobenzoic acid) and examining the lysosomal β-hexosaminidase latency loss in a hypotonic sucrose medium. The results show that methylene blue–mediated photooxidation of lysosomes decreased their membrane thiol groups and produced cross-linkage of membrane proteins (molecular weight ranging from 75 000 to 125 000), which was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Simultaneously, the lysosomal osmotic sensitivity increased. These photoinduced alterations of the lysosomes could be recovered by reducing the oxidized thiol groups with dithiothreitol. It indicates that the photooxidation of membrane thiol groups can increase the lysosomal osmotic sensitivity and therefore provides a new explanation for the photoinduced lysosomal lysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.