Abstract

Devices based on the lossy mode resonance (LMR) effect have found numerous sensing applications. Herein, the enhancement of the sensing properties by the introduction of an intermediate layer between the substrate and the LMR-supporting film is discussed. Experimental results for a silicon oxide (SiO2) layer of tuned thickness between a glass slide substrate and a thin film of titanium oxide (TiO2) prove the possibility of significantly increasing the LMR depth and the figure of merit (FoM) for refractive index sensing applications, which is supported by a numerical analysis using the plane wave method for a one-dimensional multilayer waveguide. The application of the intermediate layer allows the introduction of a new, to the best of our knowledge, degree of freedom into the design of LMR-based sensors, resulting in improved performance for demanding fields such as chemical sensing or biosensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call