Abstract
Rare-earth-doped oxide-based phosphors have attracted great interest as light-emitting materials for technical applications and fundamental research because of their high brightness, tunable emission wavelength, and low toxicity, as well as chemical and thermal stability. The recent development of rare-earth-doped nanostructured materials showed improved phosphorescence characteristics, including afterglow and lifetime. However, the development of highly efficient phosphors remains challenging in terms of brightness and long persistence. Herein, novel protocols were developed for improving phosphorescence characteristics based on the energy transfer effect by chemical mixing of spectrally different phosphors. This protocol is based on the simple mixing method of different phosphors, which is totally different from the conventional methods but provides much brighter persistent phosphorescence. Simple chemical mixing methods significantly improved the afterglow intensity and lifetime of green and blue phosphors regardless of mixed time when subjected to a high-temperature solid-state reaction. In particular, chemical mixing after a high-temperature solid-state reaction enhanced the phosphorescence intensity more effectively than did chemical mixing before the reaction. We achieved increased luminescence of the phosphor, which is 10 times greater than that of the control sample, from all of the chemical mixing methods, which resulted in more efficient energy transfer than previously reported studies. Chemical mixing of three spectrally different phosphors was also performed to achieve multistep energy transfer for the first time, exhibiting a much higher afterglow intensity (∼2 times) than that of single-step energy transfer. This study provides a novel and simple method for the production of bright and long-persistent phosphors and thus expands their application range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.