Abstract

In the present study, a novel process-based cultivation system was designed to improve lipid productivity of Nannochloropsis gaditana, an oleaginous microalga that has high potential for biofuel production. Specifically, four flat-panel photobioreactors were connected in series, and this system was subjected to continuous chemostat cultivation by feeding fresh medium to the first reactor at dilution rates of 0.028 and 0.056day−1, which were determined based on Monod kinetics. The results show that the serially connected photobioreactor system achieved 20.0% higher biomass productivity and 46.1% higher fatty acid methyl ester (FAME) productivity than a conventional single photobioreactor with equivalent dilution rate. These results suggest that a process-based approach using serially connected photobioreactors for microalgal cultivation can improve the productivity of lipids that can be used for biofuel production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.