Abstract

Organic solar cells show a commercially viable future duo to their inherent advantages, such as light weight, flexibility, and so on. Recently, a lot of progress has been made in every domain of organic solar cells. Among these, plasmonic light trapping is regarded as a promising light management technology for improving the light absorption in organic active layer. In this work, we numerically investigate the light enhancement in organic solar cell by embedding metal gratings as electrodes, including the anode and cathode. The absorption enhancement mechanism is analyzed, and the effects of grating parameters and incident angle are also investigated systematically. The results show the plasmonic gratings, especially the bottom grating, have an obvious improvement for light harvesting in organic layer, and an optical enhancement factor about 100% is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.