Abstract

The enhancement of the light absorption ability of synthetic chlorophyll derivatives is demonstrated. Chlorophyll derivatives directly conjugated with a difluoroboron 1,3-diketonate group at the C3 position were synthesized from methyl pyropheophorbide-d through Barbier acylmethylation of the C3-formyl moiety, oxidation of the C3-carbinol, and difluoroboron complexation of the diketonate. Electronic absorption spectra in a diluted solution showed that the synthetic conjugates gave an absorption band at λ=400-500 nm, with a Qy band shifted to a longer wavelength of λ≈700 nm. DFT calculations demonstrated that the absorption bands and redshifts were ascribable to the coupling of the LUMO of chlorin with that of the difluoroboron diketonate moiety. The introduction of a pyrenyl group at the C3(3) -position of the conjugate afforded an additional charge-transfer band over λ=500 nm, producing a pigment that bridged the green gap in standard chlorophylls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.