Abstract
A highly Lewis acidic aluminum complex was produced using a tridentate ligand 1. The enhanced Lewis acidity of 1-Al was attributed to the combination of a stereoelectronic effect and an electrostatic effect. Comparison with an unstrained complex 4-Al indicated that the ligand-defined sp 3 geometry of the aluminum in 1-Al led to the lower LUMO level and the larger LUMO coefficient on the aluminum. 1-Al promotes a catalytic allylation of aromatic aldehydes using allyltrimethylsilane. A catalytic amount of excess ligand added to the aluminum was important for high chemical yield. The excess ligand might act as a proton source to facilitate ligand exchange on the highly Lewis acidic aluminum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.