Abstract

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has been demonstrated to be one of the best performing mixed ionic-electronic conductors (MIEC) for SOFC cathode materials. Surface exchange on LSCF, however, limits the oxygen transport and the performance. In this study, we investigated a composite cathode with surface modification of LSCF for enhanced oxygen dissociation on the surface, while utilizing LSCFs ability to transport oxygen through the bulk. Manganese ions were ion implanted into LSCF bar samples. Various implantation energies and ion concentrations were used to create samples with different Mn-ion depth profiles. The oxygen transport properties were characterized by electrical conductivity relaxation (ECR), using DC four-point probe measurements during the oxygen re-equilibration processes. The oxygen transport properties, chemical diffusion coefficient (Dchem) and chemical surface reaction coefficient (kchem) were obtained by fitting ECR data using the diffusion equations. kchem changes with different Mn doping levels and doping energies of manganese ions. The Mn ion implanted LSCF samples showed an enhanced kchem, improving the overall oxygen reduction reaction (ORR) for LSCF cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.