Abstract

This paper presents a modification of Krylov Subspace Spectral (KSS) Methods, which build on the work of Golub, Meurant and others pertaining to moments and Gaussian quadrature to produce high‐order accurate approximate solutions to variable‐coefficient time‐dependent PDE. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, the modification uses block Lanczos iteration in order to avoid the need to compute two quadrature rules for each component of the solution, or use perturbations of quadrature rules. It will be shown that under reasonable assumptions on the coefficients of the problem, a 1‐node KSS method is unconditionally stable, and methods with more than one node are shown to possess favorable stability properties as well. Numerical results suggest that block KSS methods are significantly more accurate than their non‐block counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.