Abstract

A series of measurements were carried out with the TRasco Intense Proton Source (TRIPS) to determine the effectiveness of different materials as electron donors. It is well known that the use of boron nitride (BN) disks inside the plasma chamber increases the current extracted from microwave discharge ion sources, generating additional electrons. In the past, one of the two disks was replaced by a 40μm Al2O3 coating over the extraction electrode, which gave some increase of current, but after less than 200h was heavily damaged. The tests here reported concern three different options: (a) thicker Al2O3 layer (100μm) deposited over the extraction electrode; a 1-mm-thick aluminium foil over which an alumina layer is deposited, inserted in the plasma chamber; a 5-mm-thick Al2O3 tube embedded in the plasma chamber of the TRIPS source (the outer diameter of the tube being slightly smaller than the inner diameter of the chamber). The tests were carried out in the same conditions as for magnetic field topology and only rf power and gas input were variable. Special attention was paid to the proton fraction. In fact, a higher proton fraction can be considered as a signature of the higher availability of electrons in the plasma. With the thick alumina tube not only was a better current and proton fraction observed but also a lower beam ripple and better stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call