Abstract

The effect of surface functionalization on the interfacial adhesion between two immiscible semicrystalline polymers, polypropylene (PP) and a polyamide (nylon 6, Ny6)), was investigated. The surface of PP was functionalized by a low-energy ion-beam-assisted gas reaction. Surface functional groups containing carboxyl and carbonyl groups created remarkably different interactions at the interface. Fracture toughness was measured using an asymmetric double cantilever beam test (ADCB). The calculated fracture toughness was significantly increased for the functionalized PP case. The system with reactive oxygen gas added showed a higher fracture toughness than the case with only argon-ion-beam irradiation because of more reactions and/or interactions between the functionalized PP surface and Ny6. Analysis on the locus of failure by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) revealed that the fracture toughness between PP and Ny6 was influenced not only by the bonding temperature but also by the bonding time at constant bonding temperature. The fracture toughness increased after some induction time of annealing; then, it reached a plateau value. The fracture toughness increased with the bonding temperature, showed a maximum at 200 °C, and then decreased at a higher temperature of 210 °C. This behavior is different from other reported results. The present system is more or less like a chain tethered to a solid surface. The failure was caused by the weaker of the adhesive strength or the cohesive strength. The effect of bonding temperature is attributed to the cohesive failure in the PP phase. The adhesive strength increased with the bonding temperature while the cohesive strength decreased with the bonding temperature because of less entanglement of reacted chains with the other chains in the bulk. The dependence of the fracture toughness on the bonding time was explained in terms of this fracture mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.