Abstract

We examined the effects of hypoxia (8% O2) on in vivo tyrosine hydroxylation, a rate-limiting step for catecholamine synthesis, in the rat adrenal gland. The hydroxylation rate was determined by measuring the rate of accumulation of 3,4-dihydroxyphenylalanine (DOPA) after decarboxylase inhibition. One hour after hypoxic exposure, DOPA accumulation decreased to 60% of control values, but within 2 h it doubled. At 2 h, the apparent Km values for tyrosine and for biopterin cofactor of tyrosine hydroxylase (TH) in the soluble fraction were unchanged, whereas the Vmax value increased by 30%. The content of total or reduced biopterin was unchanged, but the content of tyrosine increased by 80%. Tyrosine administration had little effect on DOPA accumulation under room air conditions but enhanced DOPA accumulation under hypoxia. After denervation of the adrenal gland, the hypoxia-induced increase in DOPA accumulation and in the Vmax value was abolished, whereas the hypoxia-induced increase in tyrosine content was persistent. These results suggest that in vivo tyrosine hydroxylation is enhanced under hypoxia, although availability of oxygen is reduced. The enhancement is the result of both an increase in tyrosine content coupled with increased sensitivity of TH to changes in tyrosine tissue content and of an increase in dependence of TH on tyrosine levels. The increase in the sensitivity of TH and in the Vmax value is neurally induced, whereas the increase in tyrosine content is regulated by a different mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.