Abstract
First principles electronic structure calculations of the pentagonal dodecahedron (H2O)20 (D-cage) and tetrakaidecahedron (H2O)24 (T-cage), building blocks of structure I (sI) hydrate lattice, suggest that these can accommodate up to a maximum of 5 and 7 guest hydrogen molecules, respectively. For the pure hydrogen hydrate, Born–Oppenheimer molecular dynamics (BOMD) simulations of periodic (sI) hydrate lattices indicate that the guest molecules are released into the vapor phase via the hexagonal faces of the larger T-cages. The presence of methane in the larger T-cages was found to block this release, therefore suggesting possible scenarios for the stabilization of these coated clathrate hydrates and the potential enhancement of their hydrogen storage capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.