Abstract

In this paper, the effect of the fluidization concept on the performance of methane steam reforming has been investigated by comparing a fluidized-bed steam reformer (FBSR) with an industrial-scale conventional steam reformer (CSR). Also, a fluidized-bed thermally coupled steam reformer (TCFBSR) and a fixed-bed thermally coupled steam reformer (TCSR) have been compared. In thermally coupled reactors, the hydrogenation of nitrobenzene to aniline exothermic reaction is employed. A steady state one dimensional heterogeneous model is applied to analyze methane conversion and hydrogen production for steam reforming of methane in different reactors (CSR, FBSR, TCSR, and TCFBSR). The modeling results show that, in FBSR, hydrogen production and methane conversion are increased by 2.13 and 0.52%, respectively, in comparison with CSR. Also, by using fluidized catalysts instead of fixed ones in TCSR, methane conversion and hydrogen yield are increased from 0.2776 to 0.2934 and from 0.9649 to 0.9836, respectively. These improvements represent the appropriate effect of the fluidization concept on the enhancement of hydrogen production in different steam reformers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call