Abstract

We prepared HKUST-1 (Cu3BTC2; BTC3- = 1,3,5-benzenetricarboxylate) using a spray synthesis method with Li doping and defect created via partial replacement of H3BTC with isophthalic acid (IP) to enhance the H2 adsorption capacity. Li-doping was performed by incorporating LiNO3 in HKUST-1 via spray synthesis and subsequent thermal treatment for decomposing NO3-, which enhances H2 uptake at 77 K and 1 bar per unit mass and per unit area from 2.37 wt% and 4.16 molecules/nm2 for undoped HKUST-1 to 2.47 wt% and 4.33 molecules/nm2, respectively. Defect creation via the replacement of the BTC3- linker with the IP2- linker slightly in HKUST-1 skeleton did not affect H2 uptake. Both Li-doping and defect creation significantly enhanced H2 uptake to 3.03 wt%, which was caused by the coordination of Li ions with free carboxylic groups of the created defects via IP replacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.