Abstract

This article explores the influence of thermal radiation on the flow and heat transfer of single-walled carbon nanotubes over both a convergent and divergent channel. Flow is induced due to a Darcy–Forchheimer medium. Further, the heat transfer mechanism is analyzed in the presence of a thermal radiation process. Guided by some appropriate similarity transformations, the fundamental PDEs are converted into a self-similar system of coupled non-linear ODEs. The findings are obtained with the help of the Runge–Kutta-45-based shooting method. The roles of the Reynolds number, porosity parameter, inertia coefficient parameter, Prandtl number and radiation parameter are presented graphically. Results are displayed and show that the rate of heat transfer is higher in a divergent channel as compared to a convergent channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call