Abstract
The present study is a numerical investigation on the flow and heat transfer in a mini-channel where both hot liquid water and mercury co-flow together in a direct contact manner. Results show that the presence of a high thermal conductivity liquid metal such as mercury enables the hot water to lose much more of its initial thermal energy content, than when only water alone flows in the channel. However, too unjustified excessive mercury co-flowing with the hot water can lead to adverse effects in regards to the heat loss from the hot water. The reason behind the enhanced heat transfer between the two liquids is due to the initiation of high temperature gradients sites inside the channel, especially in the region of the interface between the two liquids, in addition to the high thermal conductivity of mercury, as compared to water thermal conductivity. These two effects lead to effective conduction cooling in the transverse direction over the whole length of the channel. These aspects are quantified in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.