Abstract
Thermoelectric properties of materials are typically evaluated using the figure of merit, ZT, which relies on both the electrical and thermal properties of the materials. Although graphene has a high thermoelectric power factor, its overall ZT value is quite low as it possesses extremely high thermal conductivity. Phonons are the main heat carrier in graphene, and therefore propagation of heat in the material may be modulated by introducing defects into the structure, resulting in reduced thermal conductivity. In this study, we investigate the effect of graphene defect density on the thermoelectric performance of graphene. The defects introduced into graphene by oxygen plasma treatment reduce its Seebeck coefficient as well as its electrical conductivity; as a result, the thermoelectric power factor declines with increasing defect density. However, at higher defect densities, the reduction in thermal conductivity dominates over the reduction in electrical conductivity and, consequently, graphene treated in this way is observed to possess ZT values of up to three times that of pristine graphene. Therefore, it may be concluded that introducing controlled amount of defects into graphene is an effective way of reducing its thermal conductivity, thereby enhancing the performance of graphene-based thermoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.