Abstract

Glutathione (GSH), a major cellular antioxidant, is elevated 2- to 3-fold in kidneys of rats during prolonged treatment with mercury as methyl mercury hydroxide (MMH). Increased renal GSH is accompanied by a dose-and time-related elevation in the relative abundance of mRNA hybridizable to a cDNA probe which encodes renal γ-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in GSH synthesis. Renal GCS mRNA is maximally elevated 4.4-fold at 3 weeks following initiation of MMH treatment. Enhancement of GSH and GCS mRNA content corresponds to a relative sparing of renal cells from oxidative tissue damage during MMH exposure. These observations suggest that increased synthesis of GSH at the genetic level occurs as an initial adaptive response to mercury-induced oxidative stress in kidney cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.