Abstract

Gallic acid (GA) has various biological properties including anti-cancer effect. However, little is known about the toxicological effect of GA in primary normal cells. Here, we evaluated the effects of GA on human pulmonary fibroblast (HPF) cells in relation to reactive oxygen species (ROS) and glutathione (GSH). GA inhibited the growth of HPF cells at 24 hours in a dose-dependent manner. GA also induced HPF cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨ(m)). GA increased ROS levels including O(2)(•-) and GSH-depleted cell numbers in HPF cells at 24 hours. Treatment with 2 mM N-acetyl-cysteine (NAC) intensified growth inhibition and death in GA-treated HPF cells. NAC decreased ROS levels and increased GSH depletion in these cells. Treatment with 10 μM L-buthionine sulfoximine (BSO) also enhanced growth inhibition and death in GA-treated HPF cells. BSO increased ROS levels and GSH depletion in these cells. In conclusion, GA-induced HPF cell death was accompanied by ROS increase and GSH depletion. The changes of ROS and GSH levels by NAC and BSO appeared to affect cell growth and death in GA-treated HPF cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call