Abstract
Antagonistic phenomena between strains often occur in mixed cultures containing a bacteriocinogenic strain. A nisin Z producer (Lactococcus lactis ssp. lactis biovar. diacetylactis UL719) and 2 nisin-sensitive strains for acidification (Lactococcus lactis ssp. cremoris ATCC19257) and exopolysaccharide (EPS) production (Lactobacillus rhamnosus RW-9595M) were immobilized separately in gel beads and used to continuously preferment milk at different temperatures, with pH controlled at 6.0 by fresh milk addition. The process showed high volumetric productivity, with an increase from 8.0 to 12.5L of prefermented milk per liter of reactor volume and hour as the temperature was increased from 27 to 35°C. Lactococcus lactis ssp. lactis biovar. diacetylactis UL719 counts in prefermented and fermented (22-h batch fermentation) milks were stable during 3 wk of continuous fermentation (8.1±0.1 and 8.9±0.2 log cfu/mL, respectively). The L. lactis ssp. cremoris population (estimated with real-time quantitative PCR) decreased rapidly during the first week of continuous culture to approximately 4.5 log cfu/mL and remained constant afterward. Lactobacillus rhamnosus counts in prefermented and fermented milks significantly increased with prefermentation time, with no temperature effect. Nisin Z reached high titers in fermented milks (from 177 to 363 IU/mL), with EPS concentration in the range from 43 to 178mg/L. Immobilization and continuous culture led to important physiological changes, with Lb. rhamnosus becoming much more tolerant to nisin Z, and Lb. rhamnosus and L. lactis ssp. lactis biovar. diacetylactis UL719 exhibiting large increases in milk acidification capacity. Our data showed that continuous milk prefermentation with immobilized cells can stimulate the acidification activity of low-acidifying strains and produce fermented milks with improved and controlled functional properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.