Abstract
It has been postulated that the degenerative process in dystrophic muscle results from increased concentrations of free radicals, peroxides, or lipid hydroperoxides. Therefore, the reduction of the free radical tanol (2,2,6,6-tetramethyl-4-piperidinol-1-oxyl) by extracts of muscles of dystrophic and normal chickens was studied. Pectoral (white) and thigh (red) muscles were used. For initial rate measurements, the various muscle extracts were added to an equal volume of 0.2 mM tanol. Reaction mixtures were introduced into the EPR cavity in a standard aqueous flat cell. Rates were measured by continuously monitoring the decrease in signal amplitude of the center (MI = 0) solution tanol EPR resonance line (in-phase first harmonic absorption signal). With extracts from dystrophic white muscle, the reduction rate was 75% faster than normal, whereas in dystrophic red muscle extracts the rate was normal. This agreed with previous observations that white muscle is more severely affected than red in dystrophic chickens. The primary reductant was identified as reduced ascorbic acid, and the rate of reduction of tanol correlated directly with the concentrations of ascorbic acid in the various muscle extracts as shown by chemical analysis. The results suggest an involvement of the intracellular redox status in the pathogenesis of avian muscular dystrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.