Abstract
We investigated the near-field enhancement of a localized surface plasmon resonance (LSPR) structure based on gold nanograting pairs with a nanosized gap. The results calculated by finite-difference time-domain and rigorous coupled-wave analysis methods presented that the nanogap enclosed by two neighboring nanogratings produced significant confinement and enhancement of electromagnetic fields and allowed a sensitive detection in sensing of surface binding events. Gold gratings with a narrow gap distance less than 10 nm showed enhanced refractive index sensitivity due to the intensified optical field at the nanogap, outperforming the LSPR structure with noninteracting nanogratings. Also, we analyzed the effectiveness of using an overlap integral (OI) between analyte and local plasmon field to estimate the detection sensitivity. We found a strong correlation of field-analyte OI with far-field sensor sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.