Abstract

This investigation reports on room temperature ferromagnetism in pristine and C ion implanted CeO2 thin films deposited on Si (111) substrates by the radio frequency (RF)-sputtering method. X-ray diffraction analysis shows that the face-centered cubic (FCC) structure corresponds to CeO2. The Raman spectra further confirm the formation of phase and also indicate the presence of defects, mainly oxygen vacancies, in these films. The presence of C is evident from Rutherford backscattering studies. Atomic force microscopy images indicate that the surface roughness values of the films reduce after C ion implantation. It is observed that the magnetic properties in CeO2 thin films are enhanced by C ion implantation. The saturation magnetization of the pristine film increases from ∼7 emu cm−3 to ∼27 emu cm−3 for a fluence of 6 × 1016 ions cm−2. It is also observed that the coercivity values change after C ion implantation and reduce for a film with an ion fluence of 6 × 1016 ions cm−2 compared with other films. Mechanisms such as the F-center exchange (FCE) model are considered when attempting to understand the enhanced ferromagnetism of C ion implanted CeO2 thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.