Abstract

Implantable electrochemical sensors enable fast and sensitive detection of analytes in biological tissue, but are hampered by bio-foulant attack and are unable to be recalibrated in-situ. Herein, an electrochemical sensor integrated into ultra-low flow (nL/min) silicon microfluidic channels for protection from foulants and in-situ calibration is demonstrated. The small footprint (5 µm radius channel cross-section) of the device allows its integration into implantable sampling probes for monitoring chemical concentrations in biological tissues. The device is designed for fast scan cyclic voltammetry (FSCV) in the thin-layer regime when analyte depletion at the electrode is efficiently compensated by microfluidic flow. A 3X enhancement of faradaic peak currents is observed due to the increased flux of analytes towards the electrodes. Numerical analysis of in-channel analyte concentration confirmed near complete electrolysis in the thin-layer regime below 10 nL/min. The manufacturing approach is highly scalable and reproducible as it utilizes standard silicon microfabrication technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.