Abstract

The radial oxygen loss (ROL) of wetland plants is a crucial factor that can influence the efficiency required for nitrogen (N) removal and microbial activities responsible for N removal in constructed wetlands (CWs). However, the shift of microbial community in different niches in response to ROL has been rarely studied. This study aims to unravel the link between the ROL and microbial response in sediment, water and rhizoplane by a surface flow CW planted with Myriophyllum aquaticum for treating high-strength swine wastewater. Ti3+-citrate colorimetric method demonstrated that M. aquaticum was a wetland species with a ROL of 0.019 mg/h/plant. Using quantitative polymerase chain reactions (qPCR) and high-throughput sequencing of microbial 16S rRNA gene, we demonstrated that the abundance of facultative anaerobic denitrifiers in the rhizoplane was the most of the three niches, that in the water (5–10 cm) was the less and that in the sediment was the least. Acinetobacter was enriched and dominated amongst denitrifiers in the water. Denitrifiers in the rhizoplane were mainly dominated by enriched Pseudomonas, Aeromonas, and Acinetobacter. The theoretical calculation of oxygen sources and consumptions indicated that water reaeration should support the oxygen demands for nitrification in the aerobic layer (0–5 cm), and the ROL could stimulate the growth of facultative anaerobic denitrifiers in the rhizoplane and water (5–10 cm) to achieve denitrification within CW systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.