Abstract

An increase in glutamine synthetase (GS) mRNA expression after peripheral motor nerve injury was demonstrated by differential display PCR using single arbitrary primer coupled with in situ hybridization screening called in situ display. Differential display PCR was carried out to compare differences in mRNA expression between axotomized (6 h after the transection) and normal hypoglossal nuclei in mice. Several gene fragments were increased after nerve injury; one was identified as GS. Subsequent emulsion autoradiography of hybridization tissue sections revealed that the increase in GS mRNA was observed in injured motoneurons. As GS is a key enzyme participating in the metabolism of the major excitatory neurotransmitter glutamate, we examined the significance of increased GS expression on glutamate-uptake kinetics. GS-transfected human embryonic kidney cells showed an up-regulation in glutamate-uptake kinetics. Therefore, newly expressed GS together with an increased expression of the neuronal glutamate transporter EAAC1 in the injured motoneurons accelerates glutamate uptake. The present results may suggest that the glutamate-uptake system involving the neuronal glutamate transporter and GS in injured neurons is enhanced so as to provide resistance against neurotoxic glutamate accumulation during the early process of nerve regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.