Abstract

We report on scattering induced valley polarization enhancement in monolayer molybdenum disulfide. With thermally activated and charge doping introduced scattering, our sample exhibits seven? and twelve-folds of improvements respectively. This counter-intuitive effect is attributed to disruptions to valley pseudospin precession caused by rapid modulation of exciton momentum and concomitant local exchange interaction field, at time scales much shorter than the precession period. In contrast, the valley coherence is improved by thermally activated scattering, but not by charge doping induced scattering. We propose that this is due to anisotropic pseudospin scattering and generalize the Maialle-Silva-Sham model to quantitatively explain our experimental results. Our work illustrates that cleaner samples with minimal scattering, such as those carefully suspended or protected by hexagonal boron nitride, do not necessarily lead to good valley polarization. Well-controlled scattering can in fact provide an interesting approach for improving valleytronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call