Abstract
Among various energy harvester paradigms, the simple cantilever-structured magneto-mechano-electric (MME) energy generator comprises a piezoelectric material laminated on a magnetostrictive metal plate and permanent magnets as proof mass, exhibiting excellent magnetic energy-harvesting performance. The current challenge in using MME energy harvesters is the mechano-electric coupling at the interface between the piezoelectric material and magnetostrictive metal layer, which depends significantly on the mechanical properties of the interfacial adhesive layer. In this study, the effects of four types of adhesive interfacial layers on the output power and environmental and fatigue resistances of MME harvesters are systematically investigated. An optimized MME energy generator with an adhesive interfacial layer of 18.8 μm thickness and elastic modulus of 3.1 GPa achieves colossal enhancement (∼300%) with a maximum output power density of 0.92 mW/cm2, while a 10 Oe (=10 G = 1 mT in air; 60 Hz) magnetic field is applied. In addition, the generator exhibits a robust endurance of continuous 108 fatigue cycles and excellent temperature stability in the range of -30 to 70 °C. The presented MME generator, which harvests stray magnetic energy reliably, is promising as a low-cost and efficient autonomous power source for Internet of Things devices, wireless sensor networks, and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.