Abstract

Grazing-exit electron probe microanalysis (GE-EPMA) was performed for single Al2O3 and atmospheric particles, deposited on a flat Si substrate coated by gold, by using an aperture (1 mm in diameter) in front of an energy-dispersive X-ray detector. Silicon Kα X-rays from the Si substrate were strongly observed at an exit angle of ∼45°. However, they disappeared at grazing-exit angles about 0° and only the X-rays from particles were detected. Furthermore, Al Kα and O Kα intensities from single Al2O3 particle were enhanced approximately three- and sixfold at the grazing-exit angles (∼1°), respectively, in comparison with those at large angle (∼7°). The background intensities at the energy of Al Kα and O Kα almost monotonously decreased with decreasing exit angle. As a result, the intensity ratios of Al Kα and O Kα X-rays to the background intensities were enhanced five- and sixfold, respectively. This enhancement is considered to be caused by the interference effect of both directly detected X-rays and reflected X-rays on the flat substrate. The similar results are also obtained for Al Kα, Si Kα, K Kα and Ca Kα emitted from single atmospheric particle. The significance of the matrix effect in the particle is also pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call