Abstract

Recombination of Ar14+, Ar15+, Ca16+, and Ni19+ ions with electrons has been investigated at low energy range based on the merged-beam method at the main cooler storage ring CSRm in the Institute of Modern Physics, Lanzhou, China. For each ion, the absolute recombination rate coefficients have been measured with electron–ion collision energies from 0 meV to 1000 meV which include the radiative recombination (RR) and also dielectronic recombination (DR) processes. In order to interpret the measured results, RR cross sections were obtained from a modified version of the semi-classical Bethe and Salpeter formula for hydrogenic ions. DR cross sections were calculated by a relativistic configuration interaction method using the flexible atomic code (FAC) and AUTOSTRUCTURE code in this energy range. The calculated RR + DR rate coefficients show a good agreement with the measured value at the collision energy above 100 meV. However, large discrepancies have been found at low energy range especially below 10 meV, and the experimental results show a strong enhancement relative to the theoretical RR rate coefficients. For the electron–ion collision energy below 1 meV, it was found that the experimentally observed recombination rates are higher than the theoretically predicted and fitted rates by a factor of 1.5 to 3.9. The strong dependence of RR rate coefficient enhancement on the charge state of the ions has been found with the scaling rule of q3.0, reproducing the low-energy recombination enhancement effects found in other previous experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call