Abstract

Electromagnetically induced transparency (EIT) has led to several quantum optics effects such as lasing without inversion or squeezed light generation. More recently quantum memories based on EIT have been experimentally implemented in different systems such as alkali metal atoms. In this system the excited state of the optical transition splits into several sublevels due to the hyperfine interaction. However, most of the theoretical models used to describe the experimental results are based on a Λ-system with only one excited state. In this article, we present a theoretical model for the Λ-type interaction of two light, fields and an atomic system with multiple excited state. In particular we show that if the control and probe fields are orthogonally circularly polarized the EIT effect in an alkali-metal vapor can almost disappears. We also identify the reasons of this reduction and propose a method to recover the transparency via velocity selective optical pumping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.