Abstract

Organic optoelectronic integrated devices (OIDs) with ultraviolet (UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence (TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene (2CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(III), Ir(piq)3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N, C2′]iridium (acetylacetonate), (tbt)2Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(III), FIr6] were investigated and compared. The (tbt)2Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the (tbt)2Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 1011 Jones at a bias of −2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.