Abstract

In OLED panel repair process, femtosecond laser ablation has been adopted for last 10 years. Because femtosecond laser process can be performed with negligible thermal effect, it is suitable for modifying the organic materials whose lifetime is negatively affected by heat. Because of it, femtosecond laser ablation process has been applied to repair process of OLED panel such as elimination of internal debris, disconnection of over connected electrodes, and etc. However, it has been limitedly applied to certain types of defects. In order to increase a production yield, various types of defects should be treated. Thus, additive repair process needs to be developed. In last few decades, various research groups have been developing electrode printing techniques. But it is very hard to print an electrode with width of 1 µm scale so far. Therefore, we suggest new repair technique that combines additive and subtractive methods. It is the technique that conductive material is printed with width of few micrometers scale followed by femtosecond laser trimming with width of 1 µm scale. During an electrode printing followed by femtosecond laser trimming (EPFLT) process, we could enhance electrical conductivity of printed electrode. After EPFLT process, the average electrical conductivity of electrodes increases from 1.51ⅹ107 S/m to 2.31ⅹ107 S/m. Here, we carefully claim that the heat accumulation during a femtosecond laser trimming causes an annealing of printed electrode and the electrical conductivity is enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.