Abstract

In order to explore the composite effects of graphene (GR) and carbon nanotubes (CNTs), GR/CNTs aerogels and GR/CNTs coatings were fabricated. Aligned carbon nanotubes (ACNTs) and twining carbon nanotubes (TCNTs) were comparatively examined by integrating them with graphene, which has seldom been studied in detail. Freeze drying was novelly adopted to retain the liquid distribution in GR/CNTs mixture. Fourier Transform Infrared Spectroscopy (FTIR) analysis demonstrated that OH group and carboxylic acid groups were effectively induced onto CNTs via chemical modification. Scanning electron microscopy (SEM) showed that ACNTs achieved better dispersion and homogeneity in graphene than TCNTs. GR/CNTs hybrid composite with various loading of ACNTs or TCNTs were examined by electrical/thermal conductivity tests and practically evaluated for thermal management in LEDs. Results revealed that the electrical and thermal properties of graphene can be dramatically enhanced by the proper addition of ACNTs due to the formation of effective conductive bridges. The GR/ACNTs aerogel with 10 wt% ACNTs attained a high electrical conductivity of 2.08 × 104 S m−1, elevated to 2.76 × 104 S m−1 after annealing treatment. The eco-friendly and low-cost GR/ACNTs coating with 10 wt% ACNTs prominently reduced the operating temperature of LEDs by 8.6 °C, acting as potential thermal management materials in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call