Abstract

In this paper, contactless microwave spectroscopy measurements of weak localization in as-grown and hydrogen intercalated quasi-free-standing graphene (QFSG) grown on SiC are presented. Delamination from the substrate is observed by the change from substrate dominated to grain boundaries dominated intervalley elastic scattering in QFSG comparing to epitaxial graphene. In the case of as-grown graphene, the finite coherence length at 0 K caused by an additional inelastic scattering is observed. This additional scattering mechanism vanishes for hydrogen intercalated QFSG, and the significant enhancement of coherence length comparing to as-grown QFSG and epitaxial graphene is observed. The coherence length is comparable to that observed in free-standing graphene. The conditions under which the quantum corrections produce weak localization or weak antilocalization behavior in conductivity are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.