Abstract

We show that a significant enhancement of solar cell efficiency can be achieved in cells fabricated on black Si made using inductively coupled plasma-reactive ion etching (ICP-RIE). The ICP-RIE-fabricated black Si results in an array of vertically oriented defect-free Si nanocones (average height ∼150 nm; apex diameter ∼25 nm) exhibiting an average reflectance ≤2% over most of the relevant solar spectral range. The enabling role of the ultralow reflectance of the nanostructured black Si has been demonstrated using a heterojunction solar cell fabricated by depositing a n-type CdS film on p-Si nanocones followed by a transparent conducting coating of Al-doped ZnO (AZO). The fabricated n-CdS/p-Si heterojunction exhibits promising power conversion efficiency close to 3%, up from a mere efficient 0.15% for a similar cell fabricated on a planar Si. The effect of the fabrication process for the black Si on solar cell performance has been investigated through the measurements of carrier lifetime and surface recombination velocity. The accompanying model and simulation analysis shows that the conical structure leads to the effective dielectric constant varying smoothly from the value of the air at the top to the value of Si at the base over the length of the nanocone, leading to a substantial reduction of its reflectance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call