Abstract

This paper deals with the effects of the oxygen-enriched air (up to 50% oxygen by mass) along with other operating parameters (hydrogen flow rate, temperature, and relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The active area of a fuel cell considered was 50 cm2 with three cells in series connections. The air was supplied with O2 enriched from 23% to 50% at the cathode. The voltage obtained with the respective enriched air was 2.52 and 2.80 V respectively. The optimum oxygen enrichment was found as 45%. The stack temperature plays a significant role on performance improvement and the optimum temperature was found as 50 °C. The voltage efficiency and power output were improved by 9% and 33% with 45% oxygen-enriched air. Electrochemical impedance spectroscopy was used to analyze the impedance behavior of the fuel cell with the variable current demand. The bode plot indicates current dominates voltage at low oxygen-enriched air (25%) and vice-versa at high-enriched air. The inductive effect was dominating at the low frequency and overtaken by the capacitive effects at the higher frequency. These results would be useful to develop a dedicated fuel cell with the oxygen-enriched air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.