Abstract

Echo-signal decorrelation due to tissue compression is a significant source of error in tissue displacement estimates obtained using crosscorrelation. Tissue displacement estimates are used to compute strain values for imaging the elasticity of biological soft tissues. The correlation coefficient between the pre- and post-compression echo rf signals reduces rapidly with signal decorrelation due to increased compression. Miniscule reductions in the value of the correlation coefficient can have a significant impact on the performance of the strain estimator as illustrated by the strain filter. Reducing the rate of signal decorrelation using temporal stretching (which improves the value of the correlation coefficient), significantly improves the performance of the strain filter. The reduction in the rate of signal decorrelation with the subsequent increase in the correlation coefficient using temporal stretching is discussed in this paper. Theoretical, simulation and experimental results quantify the enhancement in the value of the correlation coefficient attained with temporal stretching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.