Abstract

Electrochemical discharge machining (ECDM) is an emerging non-traditional processing technique that involves high-temperature melting and accelerated chemical etching under the high electrical energy discharged. However, there are still several obstacles to overcome. First, both machining time and hole entrance diameter were found to increase with increasing machining depth. In particular, the increase becomes drastic when machining depth exceeds 250 μm. In addition, achieving both high efficiency and accuracy in drilling a through hole in hard and brittle materials by ECDM poses even greater difficulty. To solve the above problems, this study proposed using a tool electrode with a spherical end whose diameter (150 μm) is larger than that of its cylindrical body (100 μm). Experimental results show that the curve surface of the spherical tool electrode reduces the contact area between the electrode and the workpiece, thus facilitating the flow of electrolyte to the electrode end, and enables rapid formation of gas film, resulting in efficient micro-hole drilling. Moreover, the curve surface does not cause excessive concentration of current density; and hence, bubbles grow at a more uniform speed; thus, increasing the discharge frequency. Comparison between machining depth of 500 μm achieved by conventional cylindrical tool electrode and the proposed spherical tool electrode shows that machining time was reduced by 83% while hole diameter was also decreased by 65%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.