Abstract
Low-voltage ride through (LVRT) is important for system compensation and reliable operation of the system during balance and unbalanced voltage dips. In this study, a new LVRT capability method was developed using active and passive compensator in doubly fed induction generator (DFIG)-based wind turbines. While the active compensator provides the control of the rotor-side converter and grid-side converters of DFIG, the passive compensator decreases the stator and rotor over currents and injects reactive power into the network to support the grid voltage DFIG. Besides, rotor electromotive force is developed to improve LVRT capability against not only symmetrical but also asymmetrical faults of DFIG. It was found that the system became stable in a short time and oscillations damped using active and passive compensator modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Science and Technology, Transactions of Electrical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.