Abstract

Tropical deserts (e.g., Sahara, Arabian desert, Australian desert) are located within the Hadley circulation. Most of the dust uplifted from these deserts is carried by trade winds and deposited in tropical oceans with very little, if any, transported to polar regions. During glacial periods the dust concentrations in polar ice cores were a factor of 10 to 100 higher than during interglacial periods, including the current Holocene. The early general circulation model simulations of the past glacial climate were not able to reproduce these high mineral dust concentrations; the most recent attempts achieve an increased dust transport to polar regions by extending dust source areas to higher latitudes. We present a hypothesis that during glacial periods the Hadley cell is confined closer to the equator. This contraction of the Hadley circulation leads to the geographical change of the boundary between the tropical and the midlatitude circulation regimes. During the glacial periods a considerable fraction of the current tropical deserts was located outside the region of the Hadley circulation. This allowed the dust to be uplifted and transported by midlatitude storm systems to the polar regions. We present a model for the contraction of the Hadley circulation during the past glacial periods based on the Schneider‐Lindzen and Held‐Hou model of symmetric tropical circulation and on the assumption that the tropical sea surface temperatures were lower during glacial periods than they are today.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call