Abstract

We study the dynamics of a dilute solution of rigid rodlike polymers in a viscous fluid at low Reynolds number by means of numerical simulations of a simple rheological model. We show that the rotational dynamics of polymers destabilizes the laminar flow and causes the emergence of a turbulent-like chaotic flow with a wide range of active scales. This regime displays an increased flow resistance, corresponding to a reduced mean flow at fixed external forcing, as well as an increased mixing efficiency. The latter effect is quantified by measuring the decay of the variance of a scalar field transported by the flow. By comparing the results of numerical simulations of the model in two- and three-dimensions, we show that the phenomena observed are qualitatively independent on the dimensionality of the space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call