Abstract

Irradiations of alkyl 2-naphthoates are known to result in four isomeric "cubane-like" photodimers: anti(HH)-2, syn(HH)-2, anti(HT)-2, and syn(HT)-2 where the anti(HH)-2, anti(HT)-2, and syn(HT)-2 consist of pairs of diastereomers. Here, chiral auxiliary and chiral microreactor strategies have been combined to achieve high diastereoselectivity in photodimerizations of an enantiomeric pair of 2-naphthoates with (R)- and (S)-1-methoxycarbonylethyl esters as chiral auxiliaries (1R and 1S). Thus, irradiations of their γ-cyclodextrin (γ-CD) complexes have been conducted. Fluorescence, IR, and NMR spectra of both enantiomers of 1 demonstrate that their γ-CD complexes are mainly 2:2 with the molecules of 1 in head-to-head orientations. Irradiation of the complexes in the solid state mainly resulted in anti(HH)-2. The absolute configuration of each diastereomer of anti(HH)-2 has been established for the first time here. The diastereomeric excesses (de's) of anti(HH)-2 from 1R and 1S were 94% and 86%, respectively. These de's are much higher than those found from irradiations in solution (55% for 1R and 1S), where the opposite diastereomeric form is in excess! Calculations of the energies of various conformations of the head-to-head 2:2 inclusion complexes were performed using the PM3 approach. The predicted major diastereomers based on the calculation are consistent with those found experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.