Abstract
—Adaptive filters offer advantages over Wiener filters for time-varying processes. They are used for deconvolution of seismic data which exhibit non-stationary behavior, and seldom for noise reduction. Different algorithms for adaptive filtering exist. The least-mean-squares (LMS) algorithm, because of its simplicity, has been widely applied to data from different fields that fall outside geophysics. The application of the LMS algorithm to improve the signal-to-noise ratio in deep reflection seismic pre-stack data is studied in this paper. Synthetic data models and field data from the DEKORP project are used to this end.¶Three adaptive filter techniques, one-trace technique, two-trace technique and time-slice technique, are examined closely to establish the merits and demerits of each technique. The one-trace technique does not improve the signal-to-noise ratio in deep reflection seismic data where signal and noise cover the same frequency range. With the two-trace technique, the strongest noise reduction is achieved for small noise on the data. The filter efficiency decreases rapidly with increasing noise. Furthermore, the filter performance is poor upon application to common-midpoint (CMP) gathers with no normal-moveout (NMO) corrections. Application of the two-trace method to seismic traces before dynamic correction results in gaps in the signal along the reflection hyperbolas. The time-slice technique, introduced in this paper, offers the best answer. In this case, the one-trace technique is applied to the NMO-corrected gathers across all traces in each gather at each time to separate the low-wavenumber component of the signal in offset direction from the high-wavenumber noise component. The stacking velocities used for the dynamic correction do not need to be known very accurately because in deep reflection seismics, residual moveouts are small and have only a minor influence on the results of the adaptive time-slice technique. Noise reduction is more significant with the time-slice technique than with the two-trace technique. The superiority of the adaptive time-slice technique is demonstrated with the DEKORP data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.