Abstract

Radiation therapy is a lower invasive local treatment than surgery and is selected as a primary treatment for solid tumors. However, when some cancer cells obtain radiotherapy tolerance, cytotoxicity of radiotherapy for cancer cells is attenuated. Photodynamic therapy (PDT) is a non-invasive cancer therapy combined with photosensitizers and laser irradiation with an appropriate wavelength. PDT is carried out for recurrent esophageal cancer patients after radiation chemotherapy and is an effective treatment for radiation-resistant tumors. However, it is not clear why PDT is effective against radioresistant cancers. In this study, we attempted to clear this mechanism using X-ray resistant cancer cells. X-ray resistant cells produce high amounts of mitochondria-derived ROS, which enhanced nuclear translocation of NF-κB, resulting in increased NO production. Moreover, the expression of PEPT1 that imports 5-aminolevulinic acid, the precursor of photosensitizers, was upregulated in X-ray resistant cancer cells. This was accompanied by an increase in intracellular 5-aminolevulinic acid-derived porphyrin accumulation, resulting in enhancement of PDT-induced cytotoxicity. Therefore, effective accumulation of photosensitizers induced by ROS and NO may achieve PDT after radiation therapy and PDT could be a promising treatment for radioresistant cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call