Abstract
We investigated the photobiomodulation effects of 1072 nm infrared light on the natural immune response involved in anti-bacterial and wound healing processes. Thirty mice infected with MRSA on the skin were divided into two groups. The experimental group was treated with 1072 nm infrared light (irradiance: 20 mW/cm 2, fluence: 12 J/cm 2 for 10 min) at 2, 4, 8, 12, 24 h, 3 and 5 days after inoculation and the control group with sham light. Serial changes of the mRNA levels of TLR2, IL-1β, TNF-α, IL-6, iNOS, MCP-1, TGF-β, bFGF and VEGF were studied by real time RT-PCR and those of the expression level of VEGF, bFGF, TGF-β and NF-κB by immunohistochemistry. The mRNA levels of the cytokines involved in the early phase of anti-bacterial immune response (IL-1β, TNF-α, IL-6, MCP-1) increased significantly in the 1072 nm group, peaking between 12 and 24 h post-inoculation. These levels normalized after 3–5 days. Immunohistochemistry revealed a notably stronger expression of VEGF in the 1072 nm group from 8-h post-inoculation to 5-day post-inoculation. We concluded that 1072 nm infrared light had a photobiomodulation effect which resulted in an enhanced biological immune response to the bacterial infection by MRSA and also increased the expression of VEGF to a significant level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.